Lecture 1: Introduction to composite materials

At the end of this lecture you will have:

☑ An understanding of what are composite materials

☑ What the various types of composite materials

☑ Why they are used

☑ How they are designed
Lecture 1: Introduction to composite materials

✓ What are composites materials?
Lecture 1: Introduction to composite materials

☑ What are composites materials?

Many materials are composites made up of at least two constituents.
Lecture 1: Introduction to composite materials

✓ What are the various types of composites materials?
Lecture 1: Introduction to composite materials

✓ What are the various types of composites materials?

Typically made of a matrix and 1 or more reinforcements

They have different compositions, shapes and physical/chemical properties

![Diagram of composite materials](image-url)
What are the various types of composites materials?

- **Matrices**
 - **Polymer**
 - Thermosets (Epoxy, Polyester)
 - Thermoplastics (Polystyrene, Nylons)
 - **Metal**
 - Alloys (Steels, Aluminiums)
 - **Ceramic**
 - Glass
 - Ceramics (Semiconductors, Cermets)
 - Cements
 - **Carbon and Graphite**
Lecture 1: Introduction to composite materials

What are the various types of composites materials?

- Fibres
 - Short
 - Long
 - Plies
- Whiskers
 - Single crystals
- Laminar
- Flakes
- Filled
- Particulates
- Microspheres

The arrangement of the reinforcement (distribution, size, shape, and orientation matters)
Lecture 1: Introduction to composite materials

✓ What are the various types of composites materials?

The type, distribution, size, shape, orientation, and arrangement of the reinforcement will determine the properties of the composites material and its anisotropy.
Lecture 1: Introduction to composite materials

✓ What are the various types of composites materials?

Classification of composites:
 • Matrices:
 Organic Matrix Composites (OMCs)
 Polymer Matrix Composites (PMCs)
 carbon-carbon composites
 Metal Matrix Composites (MMCs)
 Ceramic Matrix Composites (CMCs)
 • Reinforcements:
 Fibres reinforced composites
 Laminar composites
 Particulate composites
Lecture 1: Introduction to composite materials

✓ Why are composites materials used?
Lecture 1: Introduction to composite materials

✓ Why are composites materials used?

Advantages
• Lower density (20 to 40%)
• Higher directional mechanical properties (specific tensile strength (ratio of material strength to density) 4 times greater than that of steel and aluminium.
• Higher Fatigue endurance.
• Higher toughness than ceramics and glasses.
• Versatility and tailoring by design.
• Easy to machine.
• Can combine other properties (damping, corrosion).
• Cost.
Lecture 1: Introduction to composite materials

✓ Why are composites materials used?

Disadvantages
• Not often environmentally friendly.
• Low recyclability.
• Cost can fluctuate.
• Can be damaged.
• Anisotropic properties.
• Matrix degrades.
• Low reusability.
Lecture 1: Introduction to composite materials

✓ Why are composites materials used?

Interesting mix of properties in which density is always a plus

![Diagram showing a scatter plot of Young's Modulus (E) versus Density (ρ) for various materials, including wood, carbon fibre composites, and others.]

Fig.1.1 Data for some engineering materials, in the form of a map of Young’s modulus against density
Lecture 1: Introduction to composite materials

✓ Why are composites materials used?

High versatility of shape and properties by design
Lecture 1: Introduction to composite materials

✓ How are composites materials designed?
Lecture 1: Introduction to composite materials

✓ How are composites materials designed?

By comparing, and trying to combine the properties of the various engineered materials to meet the specifications of the usage planned for the composite.
Lecture 1: Introduction to composite materials

✓ How are composites materials designed?

Properties of some matrices

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Density ρ (Mg m$^{-3}$)</th>
<th>Young’s modulus E (GPa)</th>
<th>Poisson’s ratio ν</th>
<th>Tensile strength σ_t (GPa)</th>
<th>Failure strain ϵ_f (%)</th>
<th>Thermal expansivity α (10^{-5} K$^{-1}$)</th>
<th>Thermal conductivity K (W m$^{-1}$ K$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermosets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epoxies</td>
<td>1.1–1.5</td>
<td>3–6</td>
<td>0.38–0.40</td>
<td>0.035–0.1</td>
<td>1–6</td>
<td>60</td>
<td>0.1</td>
</tr>
<tr>
<td>Polyesters</td>
<td>1.2–1.5</td>
<td>2.0–4.5</td>
<td>0.37–0.39</td>
<td>0.04–0.09</td>
<td>2</td>
<td>100–200</td>
<td>0.2</td>
</tr>
<tr>
<td>Thermoplastics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nylon 6.6</td>
<td>1.14</td>
<td>1.4–2.8</td>
<td>0.3</td>
<td>0.06–0.07</td>
<td>40–80</td>
<td>90</td>
<td>0.2</td>
</tr>
<tr>
<td>Polypropylene</td>
<td>0.90</td>
<td>1.0–1.4</td>
<td>0.3</td>
<td>0.02–0.04</td>
<td>300</td>
<td>110</td>
<td>0.2</td>
</tr>
<tr>
<td>PEEK</td>
<td>1.26–1.32</td>
<td>3.6</td>
<td>0.3</td>
<td>0.17</td>
<td>50</td>
<td>47</td>
<td>0.2</td>
</tr>
<tr>
<td>Metals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td>2.70</td>
<td>70</td>
<td>0.33</td>
<td>0.2–0.6</td>
<td>6–20</td>
<td>24</td>
<td>130–230</td>
</tr>
<tr>
<td>Mg</td>
<td>1.80</td>
<td>45</td>
<td>0.35</td>
<td>0.1–0.3</td>
<td>3–10</td>
<td>27</td>
<td>100</td>
</tr>
<tr>
<td>Ti</td>
<td>4.5</td>
<td>110</td>
<td>0.36</td>
<td>0.3–1.0</td>
<td>4–12</td>
<td>9</td>
<td>6–22</td>
</tr>
<tr>
<td>Ceramics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borosilicate glass</td>
<td>2.3</td>
<td>64</td>
<td>0.21</td>
<td>0.10</td>
<td>0.2</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>SiC</td>
<td>3.4</td>
<td>400</td>
<td>0.20</td>
<td>0.4</td>
<td>0.1</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>Al_2O_3</td>
<td>3.8</td>
<td>380</td>
<td>0.25</td>
<td>0.5</td>
<td>0.1</td>
<td>8</td>
<td>30</td>
</tr>
</tbody>
</table>
Lecture 1: Introduction to composite materials

✓ How are composites materials designed?

<table>
<thead>
<tr>
<th>Fibre</th>
<th>Density ρ (Mg m$^{-3}$)</th>
<th>Young’s modulus E (GPa)</th>
<th>Poisson’s ratio ν</th>
<th>Tensile strength σ_t (GPa)</th>
<th>Failure strain e_t (%)</th>
<th>Thermal expansivity $\alpha (10^{-6} \text{ K}^{-1})$</th>
<th>Thermal conductivity K (W m$^{-1}$ K$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiC monofilament</td>
<td>3.0</td>
<td>400</td>
<td>0.20</td>
<td>2.4</td>
<td>0.6</td>
<td>4.0</td>
<td>10</td>
</tr>
<tr>
<td>Boron monofilament</td>
<td>2.6</td>
<td>400</td>
<td>0.20</td>
<td>4.0</td>
<td>1.0</td>
<td>5.0</td>
<td>38</td>
</tr>
<tr>
<td>HMa carbon</td>
<td>1.95</td>
<td>axial 380 radial 12</td>
<td>0.20</td>
<td>2.4</td>
<td>0.6</td>
<td>axial -0.7</td>
<td>axial 105</td>
</tr>
<tr>
<td>HSb carbon</td>
<td>1.75</td>
<td>axial 230 radial 20</td>
<td>0.20</td>
<td>3.4</td>
<td>1.1</td>
<td>axial -0.4</td>
<td>axial 24</td>
</tr>
<tr>
<td>E-glass</td>
<td>2.56</td>
<td>76</td>
<td>0.22</td>
<td>2.0</td>
<td>2.6</td>
<td>4.9</td>
<td>13</td>
</tr>
<tr>
<td>NicalonTM</td>
<td>2.6</td>
<td>190</td>
<td>0.20</td>
<td>2.0</td>
<td>1.0</td>
<td>6.5</td>
<td>10</td>
</tr>
<tr>
<td>KevlarTM 49</td>
<td>1.45</td>
<td>axial 130 radial 10</td>
<td>0.35</td>
<td>3.0</td>
<td>2.3</td>
<td>axial -6</td>
<td>axial 0.04</td>
</tr>
<tr>
<td>FPTM fibre</td>
<td>3.9</td>
<td>380</td>
<td>0.26</td>
<td>2.0</td>
<td>0.5</td>
<td>8.5</td>
<td>8</td>
</tr>
<tr>
<td>SaffilTM</td>
<td>3.4</td>
<td>300</td>
<td>0.26</td>
<td>2.0</td>
<td>0.7</td>
<td>7.0</td>
<td>5</td>
</tr>
<tr>
<td>SiC whisker</td>
<td>3.2</td>
<td>450</td>
<td>0.17</td>
<td>5.5</td>
<td>1.2</td>
<td>4.0</td>
<td>100</td>
</tr>
<tr>
<td>Cellulose (flax)</td>
<td>1.0</td>
<td>80</td>
<td>0.3</td>
<td>2.0</td>
<td>3.0</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

a High modulus

b High strength